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Abstract Energy allocation is believed to drive trade-offs
in life history evolution. We develop a physiological and
genetic model of energy allocation that drives evolution of
feeding rate in a well-studied model system. In a variety of
stressful environments Drosophila larvae adapt by altering
their rate of feeding. Drosophila larvae adapted to high
levels of ammonia, urea, and the presence of parasitoids
evolve lower feeding rates. Larvae adapted to crowded
conditions evolve higher feeding rates. Feeding rates
should affect gross food intake, metabolic rates, and effi-
ciency of food utilization. We develop a model of larval net
energy intake as a function of feeding rates. We show that
when there are toxic compounds in the larval food that
require energy for detoxification, larvae can maximize their
energy intake by slowing their feeding rates. While the
reduction in feeding rates may increase development time
and decrease competitive ability, we show that genotypes
with lower feeding rates can be favored by natural selection
if they have a sufficiently elevated viability in the toxic
environment. This work shows how a simple phenotype,
larval feeding rates, may be of central importance in
adaptation to a wide variety of stressful environments via
its role in energy allocation.
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Introduction

A fundamental component of the modern theory of life-
history evolution has been the concept of trade-offs (Roff
and Fairbairn 2007a; van Noordwijk and de Jong 1986;
Zera and Harshman 2001, 2011). This idea was perhaps
most concretely made by Cody (1966) in his development
of a theory of clutch size. Cody’s idea, and that of more
recent adherents, has been that energy is a fundamental
limiting resource and that allocation of energy to different
life-history related traits therefore involves trade-offs (Flatt
and Heyland 2011; van Noordwijk and de Jong 1986).

Trade-offs between reproduction and some other fitness
components are often the target of research on life history
trade-offs. Important research has come from both studies
of natural and lab adapted populations—each presents their
own strengths and weaknesses. For example, wing poly-
morphism in the cricket Gryllus firmus has been shown to
be due to an energetic trade-off between wing production
and fecundity (Roff and Fairbairn 2007b; Zera 2009; Zera
and Harshman 2001, 2009). However, we lack the detailed
knowledge of the evolution of this polymorphism which we
would typically have available for laboratory evolved
populations.

In laboratory evolved populations of Drosophila, one
phenotype that responds to stressful larval environments is
larval feeding rate, measured as the number of sclerite
retractions per minute while feeding (Burnet et al. 1977;
Joshi and Mueller 1988). Feeding rates may increase in
response to crowding (Joshi and Mueller 1988) or they may
decrease in response to toxins in the food (Borash et al.
2000) or exposure to parasites (Fellowes et al. 1999). One
study also documented a decrease in competitive ability
and, thus, presumably in larval feeding rates in response to
the evolution of adult learning behaviors (Mery and
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Kawecki 2003). Feeding rates are known to affect com-
petitive ability for food (Burnet et al. 1977; Joshi and
Mueller 1988) but are also expected to affect energy
acquisition and growth rates (Mueller et al. 2005).

Thus, we have very strong empirical evidence that
adaptation in Drosophila to a variety of stressful environ-
ments involves a common physiological trait. We develop
a physiological model that unifies these apparent disparate
observations through the simple concept of energy alloca-
tion. Consequently although motivated by specific obser-
vations in Drosophila we suggest one of the unifying
themes in life-history evolution, energy allocation, is
driving Drosophila larval evolution (Stearns 1992; Roff
1992). Although the physiological model suggests feeding
rates may maximize energy intake we do not simply
assume evolution maximizes energy intake. Rather we
develop a specific population genetic model that suggests
the fine tuning of energy intake is due to a fitness com-
ponent trade-off e.g. increased viability for increased
development time.

A model of energy acquisition and feeding rates
Toxic food environments

The goal of our physiological model is to take into account
the various energy acquiring and expending activities that
are a function of feeding rates. We first take an optimiza-
tion approach and ask what feeding rate maximizes the
energy intake, per unit time. Evolution may not maximize
energy uptake. However, we can explore the relationship
between feeding rates and energy uptake as a way of
suggesting possible empirical research that might help
determine if this has indeed occurred.

Following our earlier work (Mueller et al. 2005), we
model feeding efficiency, metabolic rate and food con-
sumption. As a crude approximation we will use linear
models for each of these, which may be valid in the
vicinity of an equilibrium feeding-rate even if there is a
non-linear relationship over the entire range of feeding
rates. We use the term feeding efficiency to mean the
fraction of ingested food that is digested by larvae.
Feeding efficiency is a decreasing function of feeding
rate. Empirical support for this claim come from a
comparison of two different sets of crowding-adapted
(fast feeding) and control (slow feeding) Drosophila
populations (Joshi and Mueller 1996; Mueller et al.
1991). These studies showed that fast feeding larvae
required more food to reach the same critical minimum
size as control larvae. We can use the probability of
surviving on 4.5 mg of food as a surrogate measure of
feeding efficiency. The higher this probability is the more
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Fig. 1 a The relationship between feeding rates and efficiency. The
data come from two populations of Drosophila melanogaster, called
r-selected (slow feeding) and K-selected (faster feeding). The feeding
rate data are from Joshi and Mueller (1988) and the efficiency data is
from Mueller (1990). Using the data from Table 2 of Mueller (1990) a
linear regression was used to estimate the probability of surviving on
4.5 mg of yeast. A more efficient genotype would have a higher
chance of surviving on a fixed level of food and hence our use of the
word “efficiency” for the y-axis label. b The metabolic rates of
Drosophila melanogaster populations that differ in their feeding rates.
The slower feeding data point is from populations adapted to high
levels of ammonia while the higher feeding rate data point is from
control populations. The feeding rate measurements come from
(Borash et al. 2000) and the metabolic rate measurements come from
Mueller et al. (2005). ¢ The amount of energy fixed as biomass in
Drosophila larvae given varying periods of time to feed. The data
come from the UU female population described in Santos et al.
(1997). The adult dry weight of flies was converted to Joules using the
conversion of 27.8 J/mg as described in Djawdan et al. (1996)

efficient the genotype. The study of Mueller (1990)
shows a negative correlation between feeding efficiency
and feeding rate (Fig. la).
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Here we assume that relationship in Fig. 1a is due to the
fact that energy extracted from consumed food is greater
the longer the food sits in the digestive system (with some
limits) and that the time the food resides in the digestive
system is inversely proportional to the feeding rate (Burnet
et al. 1977).

Let f, be the larval feeding rate, E(f,), be the fraction of
food digested by larvae feeding at a rate f, (in all the
notation that follows a subscript “r” denotes a rate, Table
1). We use the linear model,

E(f) = ar +asf, (1)

where we assume that a, < 0 (see Fig. 1a).

Since feeding involves movement of both the head and
entire body we assume that metabolic rate (M,) increases as
a function of feeding rate. The few results that exist are
consistent with this assumption (Fig. 1b). Thus,

Mr(fr) - bl + b2fr7 (2)

and we assume b, > 0.

We presume that larvae consume more food per unit
time as their feeding rate increases although we know of no
direct measurements of food consumption to support this
assumption. It has been shown that fast feeding larvae
synthesize more lipid than slow feeding larvae (Foley and
Luckinbill 2001) When Drosophila larvae are given a fixed
period of time to feed the amount of energy they fix as
biomass increases in proportion to the time they feed
(Fig. 1c, Santos et al. 1997). Here we assume that if the
time to feed is fixed those larvae that feed faster will
consume more food. Clearly when f, = O then the con-
sumption rate, C,, should also be zero. However, since the
consumption rate may be non-linear over its entire range
we will allow for a non-zero y-intercept when we model
consumption in the vicinity of a feeding rate equilibrium.
Then the linear consumption rate function is,

Cr(fr) =c;+ C?frv (3)

and we assume ¢, > 0.

For larvae feeding in normal food we set the net rate of
energy intake, A,, to the difference between energy intake
and energy expenditure or C(f,)E(f,)d, — M,(f,), where d,
is a constant representing how much energy is extracted
from digested food. Replacing these functions with their
linear relationships we get,

A, = (ajcidy — by) + [di(azcr + arcz) — balfy + azczdlfrz-
4)

This quadratic equation in fr will have a single maxima
which can be found by differentiating Eq. (4) and setting
the resulting equation to 0 and solving for the feeding rate
that gives the maximum energy yield, f as

. _ by —di(axc) + aicy)

/;

2(12C2d1 (5)
Next we are interested in the feeding rate that maxi-
mizes food intake when the larvae are in an environment
with either ammonia or urea. We assume that larvae con-
suming a toxic compound will need to detoxify it thereby
incurring an energy cost of, say e; units of energy per unit
of food consumed. The cost per unit time of consuming
toxic food is then just the consumption rate times this cost
or (¢1 + ¢»fy)e;r. This means that the net energy intake rate
in a toxic environment is, A, = A, — (¢1 + caofy)er. From
this equation it is clear that net energy intake in a toxic
environment will be less than in the non-toxic environment,
that is A, < A, as long as ¢y + ¢,f, > 0 which is required
by Eq. (3) to insure positive consumption rates. Following
the same analysis that gave rise to Eq. (5) we get the
maximum Yyielding feeding rate in the toxic environment
as,

by +crey — dyi(axey + ajc)
o 2a2C2d1 '

£ (6)

For Egs. (5) and (6) to be biological feasible feeding
rates they must be greater than 0. However the denomi-
nators of Egs. (5) and (6) are negative indicating the
numerator must also be negative. Since b, and c,e; must be
positive then d(ayc; + ajaz) must also be positive and
greater than the b, + c,e;. From this we conclude that
by — di(axcr + aica) <by + cre1 — di(azer + ajcy). After
dividing the left and right side of this inequality by the
negative denominator, 2a,c,d;, we have f > f*. In other
words in a toxic environment larvae will get a higher rate
of energy return by feeding at a slower rate than they would
feeding in a toxin free environment.

If we take the first partial derivative of f;* with respect
to e; we get [2a2d1]_1, which is always negative. Thus, any
increase in ey, the cost of detoxifying food, will decrease
the feeding rate that maximizes energy intake. This high-
lights the direct relationship between the cost of detoxifi-
cation and feeding rates.

Nutrition has been studied extensively in adult Dro-
sophila, for instance to examine its effects on longevity
(Lee et al. 2008), but is much less studied in larvae. If we
take the first partial derivative of f;* with respect to d;, the
energy content of digested food, we get a term which is
always positive. Thus, if the nutritional content of the food
is decreased, e.g. d; is decreased, then the optimal feeding
rate should decrease. Mathematically the energy intake
function is a second order in f, with a negative coefficient
in front of the f- term. Thus, at high feeding rates the intake
of energy will level off and eventually decrease. The
energy consuming term is a linear increasing function of
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feeding rates and thus the optimal feeding rate will occur at
the point the difference between these two functions is
greatest. Changes in d; only affect the height of the energy
consumption function. Thus, increasing d; will cause an
increase in the optimum while a decrease will cause the
maximum difference to occur at a lower feeding rate. In the
discussion we will use this result to suggest some simple
experiments to test this model.

Evolution of slower feeding rates

We are now interested in studying the evolution of feeding
rates using the results described in the previous section.
Suppose we have two alternative genotypes: a fast feeding,
toxin sensitive genotype and a slow feeding toxin resistant
genotype. We know that the net rate of energy intake of the
fast feeding genotype is A,. Prior research with Drosophila
has shown that the larvae must reach a critical size, say m,
measured in energy units, (Bakker 1961; Mueller 1988a) to
successfully pupate. It will then take the fast feeding genotype
m/A, min to reach this critical minimum size. In a similar
fashion we conclude that the slow feeding genotype will take

m/&r min to reach its critical minimum size and this time will

be greater than m/A, because A, > A,.. Thus, the slow feeding
genotype will take longer to develop but in a toxic environ-
ment it should have superior survival since it is using energy
to detoxify the food. These set of facts are exactly what have
been observed in populations of Drosophila which has
evolved in crowded cultures (Borash et al. 1998). In these
crowded environments high levels of ammonia build up in the
cultures over time due to the deposition of ammonia waste by
large numbers of larvae. There is a genetically distinct group
of larvae in these crowded cultures that develop quickly, feed
quickly but are more sensitive to ammonia than a second
group which develops slowly, feeds slowly and is more
resistant to ammonia (Borash et al. 1998).

In this model we will focus on the increased develop-
ment time as the primary negative fitness impact of feeding
slowly although slow feeding larvae also suffer reduced
competitive ability. We assume that female fecundity is not
affected by the resistance genotype although we relax this
assumption later. The genetic model is a single locus with
two alleles. Although we assume each genotype reproduces
only once, different genotypes reproduce at different times
as described in the previous paragraph. Accordingly, we
break time into discrete intervals, x = 1, 2, ..., 8, where &
is the oldest age of reproduction among all genotypes.

The evolutionary scenario we will examine is a popu-
lation of fast feeding, toxin sensitive individuals that are
suddenly moved to a toxic environment. In this setting we
derive the conditions that allow a slower developing, toxin
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resistant genotype to become established in the population.
Let genotype AjA; be the resident, fast feeding, toxin
sensitive genotype that has age-specific survival probabil-
ities equal to p(x) = 1, for x = 1, 2, -, t;; — 2, wy; for
x =t1; — 1, and O otherwise. Thus the probability if the
AjA, genotype surviving to age tf;; (viability) is
p(1) x p(2) - x p(t;; — 1) = 1" 2w, = wy;. Of course
the viability effects are probably manifest during the entire
larval stage not just the last age-class prior to reproduction.
However, as we will see below only the product of those
survival probabilities matter so setting up the model in this
fashion does not affect our final conclusions.

For the heterozygote, p(x) = 1, forx = 1,2, ..., t;, — 2,
wy, for x = 1, — 1, and O otherwise. Finally for the toxin
resistant homozygote, A>A,, p(x) =1, for x =1, 2, ...,
thy — 2, wy for x =ty — 1, with t, > t;, > t;;. The
genotypes AjA;, AjA,, and A,A, produce F offspring at
ages 11, t12, and fp; respectively. If we let B(¢) be the total
number of zygotes produced at time ¢ and p,(f) be the
frequency of allele A; at time ¢t among these zygotes, then
we can use the difference equations developed by
Charlesworth (1994, equation 3.14a-b) to describe allele
frequency change over time as,

BOP(D) = &)+ 3" B~ pilt = 9py (e —)
men

B = Y a0)+ Y B —5) 3 pili—)py 1=
Chomen

where [;(x,?) is the chance of genotype A;A; surviving to
age-x at time ¢, m(x,t) is the fertility of genotype aged-x at
time # and g(r)=4>"2 > [Ny( x—1,0)+Nj
(x — £,0)]L;(x, t)myj(x, 1), with N;(x,0) being the number of
A;A; individuals alive at time 0.

Using the simple life-histories of the three genotypes
described above the Charlesworth equations can be greatly
simplified to,

B(t)pa(t) = g2(1) + B(t — t2)p5(t — tr2)wnoF + B(t — 112)
X p1(t — t12)p2(t — tio)winF, (7a)

B(t) = g1(t) + &(t) + B(t — t11)pi(t — tn))wi F
+2B(t — ti2)p1(t — t12)p2(t — ti)winF (7b)
+ B(t — t)p3(t — ta)waoF,
where g1(t) = N]](l]] — 1, O)W”F +N12(l‘]2 —1, O)W]QF7
g () = Nyt — t,0)wpnF + Nia(tio — 1,0)woF, and
N;j(k,0) are the number of individuals of genotype AA;

aged-k that were present at time 0. We note that with these
types of genetic models there is no simple characterization
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Table 1 A summary of parameters used in the models

Parameter Description Dimension

1 Feeding rate Retractions per minute

E(f,) Fraction of ingested food that is digested None

a y-intercept of E(f,) None

a, Slope of E(f,) (Retractions per minute) ™!

M, (f;) Metabolic rate Joules per minute

b, y-intercept of M, (f;) Joules per minute

by Slope of M, (f;) Joules per minute/retractions
per minute

C(fy) Consumption rate Joules per minute

1 y-intercept of C,(f;) Joules per minute

c Slope of C,(f,) Joules per minute/retractions
per minute

A, Net energy intake with no detoxification Joules per minute

d; Fraction of digested food that is converted to metabolic energy dimensionless

e Detoxification cost as a fraction of food intake Dimensionless

A, Net energy intake with detoxification Joules per minute

ti1, ti2, o Age of reproduction for the A;A|, A;A;, and A>A, genotypes respectively Time units

Wi, Wiz, Wao Probability of surviving to the age of reproduction for the A;A;, AjA,, Dimensionless

and A,A, genotypes respectively
Fi1, Fio, Fp

Fertility for the A1A;, A1A,, and AA, genotypes respectively

Offspring produced per individual

1.10 1.20
| | |

1

Relative Heterozygote Viability

1.00
!

T T T

20 25 30
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-
o
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Fig. 2 Initial increase conditions as a function of fecundity. The
heterozygote viability needed to permit the A, allele to increase when
rare is expressed as its value relative to the homozygote viability, e.g.

wia/wi and is equal to (w”F)(l12 — Mt
wWere fj, = 12, ) = 10, wi = 0.1

. The parameter values

of fitness since it depends on fecundity, survival and the
timing of reproduction in a complicated manner. It is only
under some special conditions that we can assume that the
rate of exponential growth derived from the Lotka—Euler
equation is equivalent to fitness (e.g. see chapter 3,
Charlesworth 1994).

We first study the conditions that permit the initial
increase of small numbers of A, alleles in the vicinity of
an equilibrium with A; fixed. Under these conditions, all
the A, bearing genotypes are assumed to be heterozygotes
and > ty;. In the vicinity of this equilibrium,

!

1.3
1

!

L

1.1

5 10 15 20
t12—ty; (development delay)

Relative Heterozygote Viability

Fig. 3 Initial increase conditions as a function of difference in the
development time of the heterozygote and resident homozygote, e.g.
t1» — t11. The heterozygote viability needed to permit the A, allele to
increase when rare is expressed as its value relative to the
homozygote viability, e.g. wio/w;;. Fecundity was constant at 12,
ti1 = 10, wy; = 0.1, and ¢, varied from 11 to 30

B(t) = B(t — t11)w11F. This is an #;;-th order difference
equation with an asymptotic solution, B(¢) = "', where,

0= “WwiF. We mnext derive the time dependent
dynamics of a small perturbation, &,, to the A, allele
frequency and determine if it will increase within the
generation of the A;A; homozygotes, e.g. f1; time units.

The approximate linear dynamics are given by, Z’sz(t) =

)vtituSz(l‘ — t12)W12F7 or

32([) = WIZF//L:_tlzsz(l‘ - t12) (8)
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Fig. 4 Frequency of the A, allele among zygotes over time. The
viability values were, wy;, wyp, and woy, were 0.1, 0.5 and 0.7
respectively. The ages of reproduction, #1, t1,, and t,, were 12, 16,
and 20 time units respectively. All genotypes were assigned a
fecundity of 15. These parameters satisfy the conditions of Eq. (10)
for a protected polymorphism. Equation (7a, b) were used to generate
the allele frequency trajectories above

Equation 8 is a f1,th order difference equation with an

asymptotic solution, &(r) = A’, where 1 = "{/wi,FA "2,

If A" > 1, then the A, allele should increase relative to the
A, allele and become established in the population. To
determine whether the A, allele will become fixed, go to an
equilibrium or perhaps enter a cycle would require addi-
tional analysis. After some algebra we find that the con-
dition that will permit the A, allele to increase when rare is,

(leF)l/tlz > (WllF)l/T“. (9)

It is interesting that even though all genotypes have the
same fecundity the parameter F is part of the condition for
initial increase. This is because the advantage to earlier
development is a function of fecundity: with increasing F,
the fitness advantage of earlier reproduction increases due
to the exponential increase in progeny over time. Of course
if these genotypes reproduced at exactly the same time, e.g.
t1» = t;;, then the initial increase condition would reduce
to wi, > wy, and evolution would no longer depend on the
value of F. If we look at the relative viability of the het-
erozygote (w»/wy;), we see that the viability advantage
that is needed for the A, allele to increase-when-rare
increases as F' increases (Fig. 2). As the developmental
delay of the heterozygote increases, the relative viability
advantage needed for the A, allele to increase-when-rare
increases (Fig. 3).

A protected polymorphism requires that both the p; = 1
and the p, = 1 equilibria be unstable which will be the
case when,

(wiF) Y12 > (1 YV and (o ) 1122 (10)

@ Springer

Although we know if the protected polymorphism con-
ditions are satisfied neither allele will be fixed we can’t say
anything specific about the polymorphism. There may be
stable points, multiple locally stable points or stable cycles.
We next study these protected polymorphisms with some
specific examples. We show an example of a protected
polymorphism (Fig. 4). The approach to this equilibrium is
oscillatory since the leading eigenvalue is a complex
number. The structure of this model produces multiple
eigenvalues with the same modulus. The initial conditions
will determine which of these dominates and thus the
details of this oscillatory behavior. This example produces
a polymorphism even though there is no overdominance in
any single fitness component. The heterozygote viability is
sufficiently larger than the A;A; homozygote viability that
it has superior fitness despite the 4 days developmental
delay. However the A,A, homozygote’s viability while
greater than the AjA; homozygote is not sufficient to insure
the fixation of the A, allele. Although allele frequencies get
very close 1.0 we do not expect allele fixation. This model
assumes an infinite population size so the conditions for a
protected polymorphism (Eq. 10) guarantee that natural
selection will prevent allele frequency fixation. However,
in a finite population it may certainly be the case that
fluctuations this extreme could push the A, allele to fixa-
tion due to random loss of all A; carrying genotypes.

The model can be generalized to allow fecundity to vary
among genotypes. Let the fecundity of AjA;, AjA,, and
AsA, be Fyy, F1,, and F», respectively. Then the equivalent
of the initial increase condition, Eq. (9), is,

(W12F12)1/t12 > (W11F11)1/t11. (11)

Discussion

It is well established that larval feeding rates are highly
correlated with competitive ability (Burnet et al. 1977,
Joshi and Mueller 1988). Given this fact why would there
be extensive additive genetic variation for larval feeding
rates? One explanation is that selection on feeding rates
varies over time and space. While competitive ability is
important in certain types of crowded environments (Bo-
rash et al. 1998) it may also decrease the efficiency of
energy intake which may have a deleterious fitness impact
in other environments (Joshi and Mueller 1996; Mueller
1990). In this paper we argue that certain kinds of toxic
larval environments may in fact favor the evolution of
reduced feeding rates as a consequence of the improved
energy intake of slower feeding larvae.

Laboratory evolution experiments have shown that
Drosophila larvae adapted to high levels of urea may have
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nearly the same viability in high urea as control popula-
tions have in standard food (Shiotsugu et al. 1997) how-
ever, their development time is demonstrably increased.
Adaptation to toxic environments containing high levels of
urea and ammonia are accompanied by the evolution of
lower larval feeding rates (Borash et al. 2000) consistent
with the theory developed in this paper.

Our genetic model assumes a penalty for slow feeding in
the form of delayed development and thus reproduction. In
the laboratory this penalty can be removed by forcing all
flies, even those that develop quickly to reproduce at the
same time. This of course would be expected to make the
evolution of slower feeding and resistance to toxins easier
than suggested in the more general model we develop in
this paper. In a natural environment flies could reproduce
multiple times which was not included in our models.
However, the faster development time and single time of
reproduction modelled here would still be a major con-
tributor to the outcome of evolution in natural populations.

Other stressful environments

Drosophila populations also respond evolutionarily to
parasitoid stress by lowering feeding rates (Fellowes et al.
1999). Even though it appears that the response of larvae to
parasitoid stress involves an immune response that is
energetically costly it is not directly proportional to food
consumption. Thus the previous model would not seem to
cover this type of evolution. It may not be unreasonable to
assume that the metabolic rate might increase due to this
more or less constant background energy requiring immune
response. In the previous model that would affect the y-
intercept of the metabolic model, e.g. ;. However the
value of fF is not affected by b,. But, if this adaptive
immune response increases b,, then that will lead to a
reduction in f;, since the numerator of Eq. (5) is negative.

Crowding

Previous theoretical and experimental work have suggested
that natural selection in crowded Drosophila cultures
would favor the evolution of higher feeding rates due to the
increased competitive ability of fast feeding larvae (Joshi
and Mueller 1988; Mueller 1988a, b). However, under this
theory (Mueller 1988a) there was no penalty to feeding
fast. It was assumed that the larvae consumed food until it
was gone and the faster feeding larvae, who consumed
more food, would be larger and thus more likely to have
achieved the minimum size needed for successful pupation.
Under the model developed in the previous section larvae
that fed faster than the optimum rate would in fact have a
reduced net energy intake and thus would be smaller when

all the food was gone relative to slower feeding larvae that
were at the optimum.

Crowded environments are likely to be heterogeneous.
In fact in these cultures you can at times see hundreds of
larvae crowded around one small section of food and a
nearby patch be almost unoccupied. Fast feeding is also
associated with roving behavior (Mueller et al. 2005; So-
kolowski et al. 1997). The advantage of feeding fast in
these environments may be in the ability of the faster
feeding larvae to find high quality patches of food before
slow feeding larvae do. Fast feeding is also not uncondi-
tionally favored in crowded environments. In one experi-
mental system it was demonstrated that there is a
polymorphism for both fast and slow feeding larvae pos-
sibly as a result of temporal heterogeneity that arises in
crowded lab populations (Borash et al. 1998).

Testing the theory

Several avenues exist for testing aspects of the theory
developed in this paper. For instance we saw that decreasing
the energy content of food, d;, should lower feeding rates. If
larvae are able to sense the nutritional values of food and
plastically change their feeding rate to conform to the optimal
rate then we should be able to experimentally demonstrate
this by measuring feeding rates in yeast solutions diluted to
different levels. Flies allowed to evolve on low nutrition food
evolve faster development times and thus possibly faster
feeding rates on this food although they are also smaller as
adults (Kolss et al. 2009). It is unclear if these observations are
contrary to the theory outlined here or not. One recent
experiment found no change in larval consumption rates as
they adapted to poor quality food (Vijendravarma et al. 2012).

The theory is also premised on the assumption that
slower feeding larvae will extract more energy from the
food they consume. This could be tested with larvae that
feed at different rates under the same conditions, such as a
comparison of urea or ammonia adapted populations and
their ancestral controls. Likewise gross food consumption
should differ between larvae with different feeding rates
under the same conditions.

The adaptation to toxic environments is premised on the
need to use energy to detoxify these compounds that are
ingested along with the food. The presence of increased
activity among relevant biochemical pathways to detoxify
either ammonia or urea could be empirically studied in
Drosophila with standard RNA expression arrays.

Drosophila encounter toxins in their natural environ-
ments and the evolutionary scenario outlined here may
have been relevant. For instance, Drosophila recens, put-
rida, and tripunctata breed and develop in mushrooms with
high levels of a-amanitin. This compound will kill many
organisms including naive species of Drosophila like
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Drosophila melanogaster but is well tolerated by these
mycophagous species (Jaenike et al. 1983). Likewise,
Drosophila schellia develops in fresh Morinda fruit that
has high levels of octonoic acid that is normally toxic to
sechellia’s close relatives like Drosophila simulans (R’kha
et al. 1991). Finally, Drosophila pachea cannot grow
without the presence of sterols found in the cactus Loph-
ocereus schottii which are in turn toxic to many other
species of Drosophila (Heed and Kircher 1965).

On a larger scale the model developed here also suggests
a mechanism for delayed maturity. Most explanations of
age at maturity revolve around the benefits to adults of
being larger—typically due to their increased fecundity or
mating success (Stearns 1992, chpt 6). The mechanisms
developed here suggest that increasing pre-adult survival
could be the important driver of postponed maturity.
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